Masonry Walls 4/12
HW - Masonry Walls
Lab - Lateral Stability

Structure II
 Section 004

Yifan Ma
yifanma@umich.edu

Using the strength method for axial compression (masonry spanning vertically) described in TMS 402, determine the safety of the given concrete masonry wall (pass or fail). Calculate the factored nominal axial strength, phi_Pn and compare it to the required strength, Pu for the given loads. (loads are given without factors)

DATASET: $1 \quad-2-\quad-3-$

Height of wall, h
Nominal thickness of wall
15 FT
Nominal thickness of wall
grouted cells o.c. spacing 10 IN

Masonry compressive strength, fm 32 IN

The wall DL

The wall LL
3000 PSI
28 KLF
21 KLF

HW - Masonry Walls

Data:

geometry, material
Required:
axial compressive load capacity, Pn

1. Determine the masonry strength, f'm, based on unit strength, fu, and mortar type
2. Find the net area, An, and Moment of Inertia, In(see TEK 14-1B)
3. Calculate $\mathrm{r}=\sqrt{I / A}$
4. Calculate h / r
5. Choose the axial strength equation, Pn: If $h / r<99$, useTMS402eq.3-11 If $\mathrm{h} / \mathrm{r}>99$, useTMS402eq.3-12
6. Calculate $\varnothing \mathrm{Pn}$ where \varnothing for axial force $=0.90$
7. Check that $\varnothing \mathrm{Pn}$ is greater than Pu

$$
\text { (Equation 3-11) for } h / r<99
$$

$$
P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}
$$

(Equation 3-12) for $h / r>99$

$$
P_{n}=0.80\left[0.80 A_{n} f_{m}^{\prime}\left(\frac{70 r}{h}\right)^{2}\right]
$$

Using the strength method for axial compression

 (masonry spanning vertically) described in TMS 402, determine the safety of the given concrete masonry wall (pass or fail). Calculate the factored nominal axial strength, phi Pn and compare it to the required strength, Pu for the given loads. (toads are given without factors)
DATASET: $1 \quad-2-\quad-3-$

Height of wall, h	15 FT
Nominal thickness of wall	10 IN
grouted cells o.c. spacing	32 IN
Masonry compressive strength, fim	3000 PSI
The wall DL	28 KLF
The wall LL	21 KLF

1. Actual wall thickness, t (see TEK 14-1B)

$$
t=9.625 \text { in }
$$

2. Net area per foot of wall, An

$\mathrm{An}=52.4 \mathrm{in}^{2}$

3. Net moment of inertia per foot of wall,In

$\ln =624.6 \mathrm{in}^{4}$

12 in . $\mathbf{(3 0 5 \mathrm { mm }) \text { block }}$

Figure 1-Specified Block Dimensions and Minimum Face Shell and Web Thicknesses (ref. 4)

Table 4-10-inch (254-mm) Single Wythe Walls, $1 / \frac{1}{4} \mathrm{in}$. (32 mm) Face Shells (standard)

4a: Horizontal Section Properties (Masonry Spanning Vertically)									
	Grout spacing (in.)	Mortar bedding	Net cross-sectional properties $A_{n}\left(\mathrm{in} .^{2} / \mathrm{ft}\right)$		$I_{n}\left(\mathrm{in} .^{4} / \mathrm{ft}\right)$			$S_{n}\left(\mathrm{in} .^{3} / \mathrm{ft}\right)$	$A_{\text {avg }}\left(\mathrm{in} .^{2} / \mathrm{ft}\right)$
Unit	$I_{\text {ang }}\left(\mathrm{in} .^{4} / \mathrm{ft}\right)$	$S_{\text {avg }}\left(\mathrm{in} .^{3} / \mathrm{ft}\right)$	$r_{\text {avg }}(\mathrm{in})$.						
Hollow	No grout	Face shell	30.0	530.0	110.1	48.0	606.3	126.0	3.55
Hollow	No grout	Full	48.0	606.3	126.0	48.0	606.3	126.0	3.55
100\% solid/solidly grouted	Full	115.5	891.7	185.3	115.5	891.7	185.3	2.78	
Hollow	16	Face shell	74.8	719.3	149.5	80.8	744.7	154.7	3.04
Hollow	24	Face shell	59.8	656.2	136.3	69.9	698.6	145.2	3.16
Hollow	32	Face shell	52.4	624.6	129.8	64.4	675.5	140.4	3.24
Hollow	40	Face shell	47.9	605.7	125.9	61.1	661.6	137.5	3.29
Hollow	48	Face shell	44.9	593.1	123.2	58.9	652.4	135.6	3.33
Hollow	72	Face shell	39.9	572.0	118.9	55.3	637.0	132.4	3.39
Hollow	96	Face shell	37.5	561.5	116.7	53.5	629.3	130.8	3.43
Hollow	120	Face shell	36.0	555.2	115.4	52.4	624.7	129.8	3.45

Using the strength method for axial compression (masonry spanning vertically) described in TMS 402, determine the safety of the given concrete masonry wall (pass or fail). Calculate the factored nominal axial strength, phi_Pn and compare it to the required strength, Pu for the given loads. (loads are given without factors)

DATASET: 1 -2-

Height of wall, h
Nominal thickness of wall grouted cells o.c. spacing
Masonry compressive strength, fm
The wall DL

The wall LL

15 FT
10 IN 32 IN 3000 PSI

28 KLF

4. Radius of gyration per foot of wall

$$
r=\sqrt{I n / A n}=\sqrt{624.6 / 52.4}=3.45 \mathrm{in}
$$

5. Ratio of \mathbf{h} / r

$$
h / r=15 * 12 / 3.45=52.17
$$

$$
\text { (Equation 3-11) for } h / r<99
$$

6. Which TMS equation used? 11 or 12

$$
\mathrm{h} / \mathrm{r}=52.17<99 \text { chose } 3-11
$$

7. Nominal axial strength, Pn

$$
P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}
$$

$$
\text { (Equation 3-12) for } h / r>99
$$

$$
P_{n}=0.80\left[0.80 A_{n} f_{m}^{\prime}\left(\frac{70 r}{h}\right)^{2}\right]
$$

(Equation 3-11) for $h / r<99$

$$
P_{n}=0.80\left\{0.80 A_{n} f_{m}^{\prime}\left[1-\left(\frac{h}{140 r}\right)^{2}\right]\right\}=0.8 *\left\{0.8 * 52.4 * 3000 *\left[1-\left(\frac{15 * 12}{140 * 3.45}\right)^{2}\right]\right\} / 1000=86.64 \mathrm{klf}
$$

Using the strength method for axial compression determine the safety of the given concrete masonry wall strength, Pu for the given loads. (loads are given without factors)

8. Factored nominal axial strength, phi_Pn
10. Does the wall pass or fail?

$$
\mathrm{Pu}=67.2<\varnothing \mathrm{Pn}=77.98 \quad \text { Pass! }
$$

$$
ø \mathrm{Pn}=0.9 * 86.64=77.98 \mathrm{klf}
$$

9. Required axial strength, Pu

$$
\mathrm{Pu}=1.2 \mathrm{DL}+1.6 \mathrm{LL}=1.2^{*} 28+1.6^{*} 21=67.2 \mathrm{klf}
$$

\square

\square
\square

.

8. Factored nominal axial strength, phi_Pn

$$
\dagger
$$

Abstract

都
Final Report

Reference Report

Due Apr 12th

Tower Project Score Sheet

PRELIMINARY REPORT (re-submit with final report)	40	
TESTING	60	
Tower weight $\leq 40 z$ (15 pts); height $=48^{\text {" }}(5 \mathrm{pts})$; holds $\geq 50 \mathrm{lbs}(5 \mathrm{pts})$ Correct Materials (5 pts) (scaled if doesn't meet requirements)	30	
Efficiency (4/weight OZ)+(load LBS/50)+(load LBS/weight OZ)x1.5 (scaled based on class rank)	30	
FINAL REPORT REQUIREMENTS	150	
Preliminary Design Development	20	
How cross-sectional design of preliminary tower was chosen	4	
How elevation of preliminary tower was developed (e.g. bracing, taper, etc.)	4	
Why/how cross-section was or was not adjusted from preliminary report	4	
Why/how elevation of tower was or was not adjusted from preliminary report	4	
Discussion of how basic principles of columns supported these decisions	4	
Revised/Tested Tower Design Analysis [SHOW WORK AND UNITS!]	50	
Calculated/modeled axial forces and derivation of required member crosssectional areas from axial forces (consider both crushing and buckling)	10	
Estimated weight calculation using actual member sizes used - include weight from members, glue, and gussets, etc.	7	
Member properties table: A, r, L, slenderness ratio (L/r), utilization ratio (actual load / allowable load)	7	
Indicate critical member (largest utilization ratio)	8	
Tower stability (as a whole) - buckling calculation	8	
Prediction of capacity of tower and mode of failure	10	
Cross-section and elevations(s) of tower	5	
Perspective(s) or isometric of tower (no screenshots!)	5	
Overall dimensions labeled (height, width, etc.) with units	5	
Member sizes labeled (cross-sectional area, length of vertical members and cross-bracing) with units	5	
Testing Results	30	
Final weight and height of tower	6	
Tested capacity of tower	6	
Observations of testing (loading, any buckling observed, etc.)	6	
Description of mode of failure	6	
Images of failure	6	
Post-Testing Analysis	30	
Comparison of testing results with predicted capacity and modes of failure	10	
Discussion of discrepancies between results	10	
Suggested improvements for future designs with reasoning discussed	10	
FINAL GRADE	250	

(Note: re-submit your Preliminary Design Proposal with your Final Report.)

LAB - Lateral Stability

Description

This project investigates stable arrangements of structural walls against lateral loading.

Goals

To observe the effects of lateral loading To investigate the criteria of stable wall patterns
To develop stable arrangements of shear walls based on the 2 point rule

Procedure

1. Arrange the small wood walls on the foam core base to support the MDF slab.
2. Make each of the six arrangements.
3. Apply lateral and torsional accelerations to the base and note the effects on the assembly. Mark on the diagrams below which fail and which remain stable.
4. Make your own stable and unstable arrangement.
5. Sketch the arrangements below and mark the intersection points.

Any Questions?
yifanma@umich.edu

Thank You!

