

Arch324 STRUCTURES II

Winter 2024 Recitation

FACULTY: Prof. Peter von Bülow

GSI: Mohsen Vatandoost

Arch324: STRUCTURES II

Welcome to Recitation session 04/12 Mohsen Vatandoost {Ph.D., M.Sc., M. Arch}

mohsenv@umich.edu

Office: Room 3104

hours:

Fri: 11:30 - 14:30

Mon, Wed: 11:00 - 12:00

walk-ins welcome!

Please feel free to ask questions.

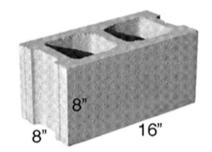
Arch324: STRUCTURES II

Welcome to Recitation session 04/12

Outline:

- Quick Recap of the week
- Provide the solution for the assignment (Homework 11)
- Answering student's questions
- Lab: Lateral Stability
- Tower Project: Final report by April 12

Please feel free to ask questions.



Contact:

Recap of the week

Clay Masonry

Concrete Masonry

Analysis and Design

Empirical approach

based on experience limits on lateral loading limits on height limits on eccentricity (basically, no flexure) non-reinforced

Rational approach

based on Strength Design (LRFD) either reinforced or non-reinforced limited by strength

Recap of the week

Rational Masonry Analysis

Procedure

Strength Design (LRFD) – non-reinforced

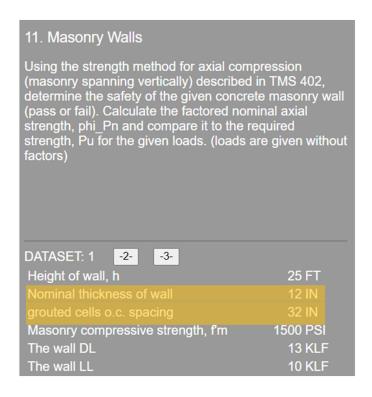
Given: geometry, material

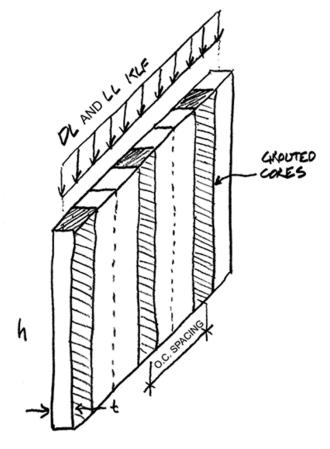
Find: axial compressive load capacity, Pn

- Determine the masonry strength, f'm, based on unit strength, fu, and mortar type (table)
- Find the net area, A_n, and Moment of Inertia, I_n (see NCMA TEK 14-1B with HW problem pdf.)
- 3. Calculate radius of gyration, $r = \sqrt{I}/A$
- 4. Calculate h/r
- 5. Choose the axial strength equation, Pn: If h/r < 99 use TMS 402 eq.9-11 If h/r > 99 use TMS 402 eq.9-12
- 6. Calculate øPn where ø for axial force = 0.90
- 7. Check that øPn is greater than Pu.

Rational Approach

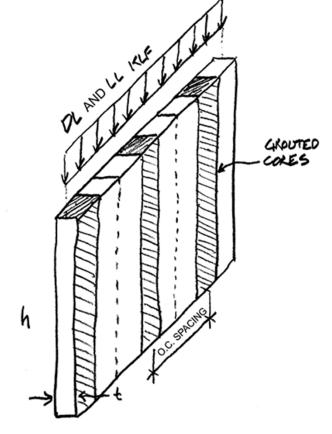
for axial compression using TMS 402 (2016)

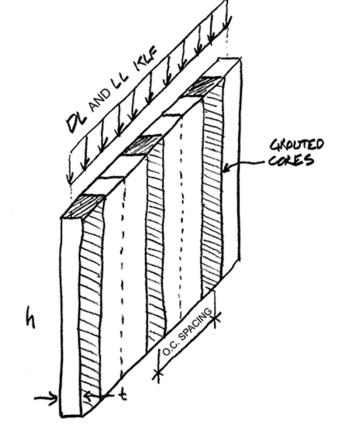

(Equation 9-11) for h/r < 99

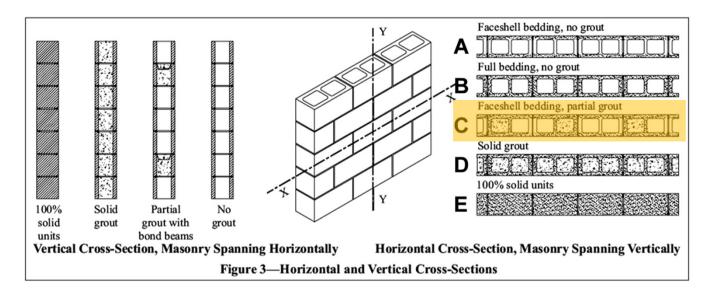

$$P_n = 0.80 \left\{ 0.80 A_n f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$$

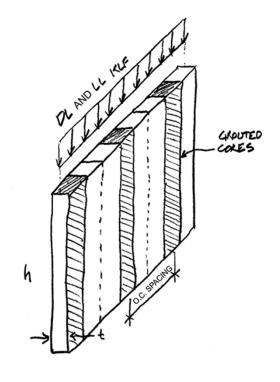
(Equation 9-12) for h/r > 99

$$P_n = 0.80 \left[0.80 A_n f_m' \left(\frac{70 \, r}{h} \right)^2 \right]$$




#	Question	Your Response
1	Actual wall thickness, t (see TEK 14-1B)	IN
2	Net area per foot of wall, An	IN2
3	Net moment of inertia per foot of wall, In	IN^4
4	Radius of gyration per foot of wall, r	IN
5	Ratio of h/r	
6	Which TMS equation used? (11 or 12)	
7	Nominal axial strength, Pn	KLF
8	Factored nominal axial strength, phi_Pn	KLF
9	Axial strength required by loads, Pu	KLF
10	Does the wall pass or fail? (1=pass 0=fail)	


Procedure


- 1. Determine the masonry strength, f'm
- 2. Find the net area, An, and Moment of Inertia, In (see TEK 14-1B)
- 3. Calculate $r = \sqrt{I/A}$
- 4. Check h/r ratio to determine the correct TMS equation for Pn
- 5. Calculate øPn where ø for axial force = 0.90

Section Properties of Concrete Masonry Walls NCMA TEK 14 – 1B (attached to problem description, and also on Canvas, and on NCMA website)

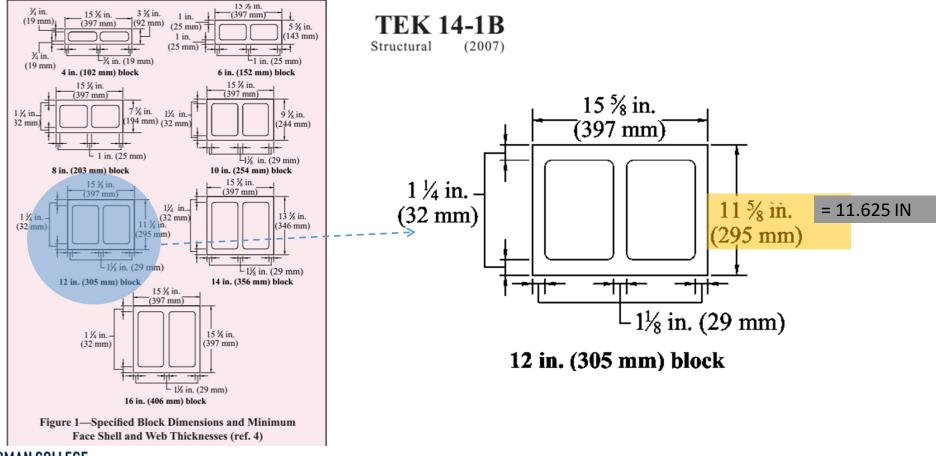
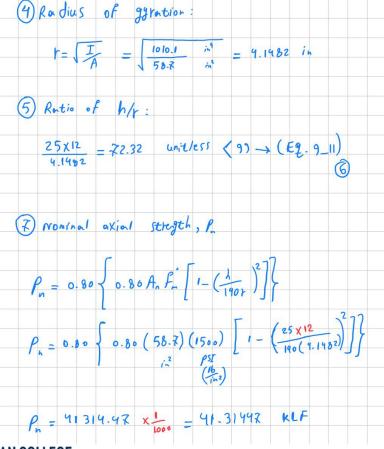
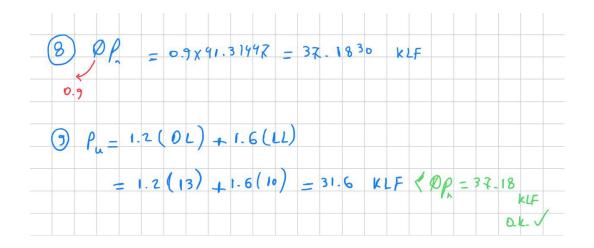



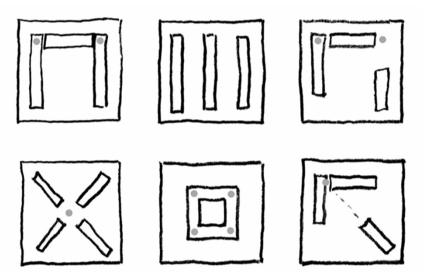
Table 5—12-inch (305-mm) Single Wythe Walls, 1¹/₄ in. (32 mm) Face Shells (standard)

5a: Horizontal Section Properties (Masonry Spanning Vertically)											
	Grout	Mortar	Net cross-sectional properties ^A			Average cross-sectional properties ^B					
Unit	spacing (in.)	bedding	A_n (in.2/ft)	I_n (in 4 /ft)	S_n (in.3/ft)	A_{avg} (in. 2 /ft)	I_{avg} (in.4/ft)	S_{avg} (in.3/ft)	r_{avg} (in.)		
Hollow	No grout	Face shell	30.0	811.2	139.6	53.1	971.5	167.1	4.28		
Hollow	No grout	Full	53.1	971.5	167.1	53.1	971.5	167.1	4.28		
100% sol	id/solidly grouted	Full	139.5	1,571.0	270.3	139.5	1,571.0	270.3	3.36		
Hollow	16	Face shell	87.3	1,208.9	208.0	95.0	1,262.3	217.2	3.64		
Hollow	24	Face shell	68.2	1,076.3	185.2	81.0	1,165.4	200.5	3.79		
Hollow	32	Face shell	58.7	1,010.1	173.8	74.1	1,116.9	192.2	3.88		
Hollow	40	Face shell	52.9	970.3	166.9	69.9	1,087.8	187.2	3.95		
Hollow	48	Face shell	49.1	943.8	162.4	67.1	1,068.4	183.8	3.99		
Hollow	72	Face shell	42.7	899.6	154.8	62.4	1,036.1	178.3	4.07		
Hollow	96	Face shell	39.6	877.5	151.0	60.1	1,020.0	175.5	4.12		
Hollow	120	Face shell	37.6	864.2	148.7	58.7	1,010.3	173.8	4.15		



(Equation 9-11) for h/r < 99

$$P_n = 0.80 \left\{ 0.80 A_n f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$$


(Equation 9-12) for h/r > 99

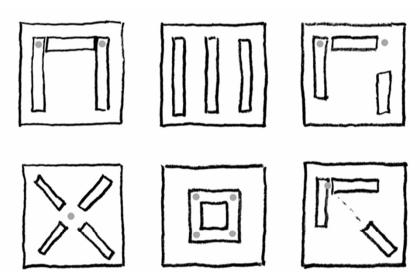
$$P_n = 0.80 \left[0.80 A_n f_m' \left(\frac{70 \, r}{h} \right)^2 \right]$$

Lab: Lateral Stability

Description

This project investigates stable arrangements of structural walls against lateral loading.

Goals


To observe the effects of lateral loading

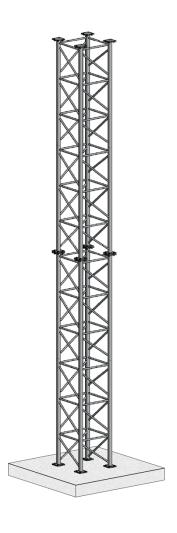
To investigate the criteria of stable wall patters

To develop stable arrangements of shear walls based on the 2 point rule

Lab: Lateral Stability

Procedure

- 1. Arrange the small wood walls on the foam core base to support the MDF slab.
- 2. Make each of the six arrangements.
- Apply lateral and torsional accelerations to the base and note the effects on the assembly. Mark on the diagrams below which fail and which remain stable.
- 4. Make your own stable and unstable arrangement.
- 5. Sketch the arrangements below and mark the intersection points.



https://structures.tcaup.umich.edu/recitation/LAB9 LateralStability.mp4

Tower Project:

Tower Project final report:

April, 12 Today

Arch324: STRUCTURES II

Thank you.

Any question?

Please feel free to ask questions.

