Structure II Recitation 3/29

Concrete Beam Design

Before we start ...

Today's Tasks:

Homework Example (Concrete Beam Design)

Lab Session (Reinforcement Placement)

Reminder:

Final Report Due Date: $4 / 12!!!!!!!!!!$

After tower testing is over and you begin to write the final reports, here are some guidelines to follow.

1. Clarity of calculations: Don't just show numbers but give equations and define variables. Make it legible. Either very neatly by hand or use an equation editor like in Microsoft Word. In Word, go to Insert->Object and select Microsoft Equation. In just a few minutes you should be able to get a hang of producing equations. It's pretty simple to use. If you use Excel make sure you label the equations - don't just show results.
2. Quality of graphics. You should have clear line-drawings from programs such as Illustrator, AutoCAD, or similar to produce dimensioned drawings of your models. If using Rhino, use the Make2D function to get clear illustrations. Photographs of your final model before and/or after testing will be required in addition to your drawings.
3. Submit reports on $8-1 / \mathbf{2}^{\prime \prime} \times 11^{\prime \prime}$ paper only. Reports on 11×17 paper will not be
accepted.
4. Be clean, polished, and professional. Write clearly, legibly, and with good grammar. Proofread your report before turning it in. Use appropriate professional language in your report The mark of a good report is one that is easy to understand by someone not familiar with the project.
5. Turn in the ORIGINAL graded copy of your Preliminary Report with your Final Report.
6. In the Revised/Tested Tower section of the Final Report (as listed on the Tower Project Tally Sheet - Final Report Requirements), do all the listed calculations for your tower as tested. That is, you should be analyzing the tower that you actually built and tested. This is not a reiteration of the Preliminary Report. We expect that certain changes were made from the preliminary design in your final design.
7. In calculating the overall tower bucking (buckling of whole tower as opposed to individual member buckling), you should use the Moment of Inertia (I) for the tower as a whole. I is taken from the tower cross-section ignoring any cross bracing (only primary vertical members). Using that value for I, you then apply the Euler Bucking Equation, using K=1.0 (this assumes the mass of the load has an inertial force that holds the top in place at the moment of buckling)
8. Mechanical properties for basswood, are given on the preliminary requirements sheet. If you used materials other than basswood, show what values you used for E,F and density. Cite your sources.
9. Throughout your report, check that your numbers are reasonable. If you get, for example, a predicted load capacity of 70 kips , you probably did something wrong.

Using the Ultimate Strength Method, analyze the given section to determine its safe moment capacity, Mu, based on the given parameters. Check that the section is tension controlled (epsilon $t>0.005$), and that the amount of steel, As is more than the minimum, As_min.

DATASET: 1 -2- $-3-$

Span of slab

Span of beam
Thickness of slab section width, b
section height, h max. aggrigate size
bar size number
stirrup bar size number concrete cover
concrete ultimate strength, $\mathrm{f}^{\prime} \mathrm{c}$
steel yield strength, fy
Floor Live Load

18 FT
35 FT
11 IN
20 IN
33 IN
0.75 IN

7

3
1.5 IN 4500 PSI 60000 PSI 95 PSF

Designing the steel bar number and actual area

Rectangular Beam Design - Method 1

Data:

- Load and Span
- Material properties - $f_{c}{ }^{\prime}, f_{y}$
- All section dimensions - b and h

Required:

- Steel area - A_{s}

1. Calculate the factored load and find factored required moment, M_{u}
2. Find $\mathrm{d}=\mathrm{h}$ - cover - stirrup - $\mathrm{d}_{\mathrm{b}} / 2$
3. Estimate moment arm $\mathrm{z}=\mathrm{jd}$, for beams $\mathrm{j} \approx 0.9$ for slabs $\mathrm{j} \approx 0.95$
4. Estimate A_{s} based on estimate of jd .
5. Use As to find a
6. Use a to find A_{s} (repeat...until 2\% accuracy)
7. Choose bars for A_{s} and check A_{s} max \& min
8. Check that $\varepsilon_{\mathrm{t}} \geq 0.005$
9. Check $\mathrm{M}_{\mathrm{u}} \leq \phi \mathrm{M}_{\mathrm{n}}$ (final condition)

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

10. Design shear reinforcement (stirrups)
11. Check deflection, crack control, rebar development length

$$
M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

DL, LL

Required Moment Mu

Required Area A req

Determine Bar Number

Calculate $\mathrm{a}, \beta 1, \mathrm{c}, \varepsilon \mathrm{st}$

Calculate final T, M

Q1: Unfactored Dead Load on Beam from Slab

Volume of the Slab x Density / Beam Span

Q2: Unfactored Dead Load on Beam from Beam (Beam Self Weight)

Volume of the Beam x Density / Beam Span (h x b x Beam Span)

```
(33\times20\times35/122})\times150/35=\underline{687.5 PLF
    Covert Unit (in to ft)
```


Q3: Unfactored Live Load on Beam

Tributary Area x Floor Live Load / Beam Span
$95 \times(0.5 \times 18 \times 3 \$) / 35=\underline{855 \text { PLF }}$

DATASET: $1 \quad-2-\quad-3-$

Q5: Factored Design Moment from the Loads (Mu)

$$
\mathrm{Mu}=\underset{\uparrow}{\mathrm{wu}_{4}} \mathrm{Q}^{2} / 8=\left(3678 \times 35^{2} / 8\right) / \underset{\uparrow}{1000}=\underline{\mathbf{5 6 3 . 1 9 3 7 5} \mathrm{ft}-\mathbf{k}}
$$

$1.2 w_{D L}+1.6 w_{L L}$

$$
M_{u}=\frac{\left(1.2 w_{D L}+1.6 w_{L L}\right) l^{2}}{8}
$$

Q6: Distance from Top Beam Edge to Centroid of Flexural Steel (d)

Look at Table A-2 to get the dimensions of the steel bars first,
For my situation:
\#7 Flexural Bar, diameter $=0.875$ in
\#3 Stirrup Bar, diameter $=0.375$ in
$\underline{d}=$ Section Height $-($ Concrete Cover + Stirrup Bar Diameter + Flexural Bar Diameter / 2)
$33-(1.5+0.375+0.875 / 2)=33-2.3125=\underline{\mathbf{3 0 . 6 8 7 5}} \mathbf{\text { in }}$

Span of slab	18 FT
Span of beam	35 FT
Thickness of slab	11 IN
section width, b	20 IN
section height, h	33 IN
max. aggrigate size	0.75 IN
bar size number	7
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strength, fic	4500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	95 PSF

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars						
		stomary Un			SI Units	
Bar No.	Diameter (i4.)	Crosssectional Area (in. ${ }^{2}$)	Unit Weight ($\mathrm{lb} / \mathrm{ft}$)	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \text { Cross- } \\ \text { sectional } \\ \text { Area }\left(\mathrm{mm}^{2}\right) \end{gathered}$	Unit Weight (kg/m)
3	0.375	0.11	0.376	9.52	71	0.560
4	0.500	0.20	0.668	12.70	129	0.994
5	0.625	0.31	1.043	15.88	200	1.552
6	0.750	0.44	1.502	19.05	284	2.235
7	0.875	0.60	2.044	22.22	387	3.042
8	1.000	0.79	2.670	25.40	510	3.973
9	1.128	1.00	3.400	28.65	645	5.060
10	1.270	1.27	4.303	32.26	819	6.404
11	1.410	1.56	5.313	35.81	1006	7.907
14	1.693	2.25	7.650	43.00	1452	11.384
18	2.257	4.00	13.600	57.33	2581	20.238

Q7: The Final Calculated Area of Steel Required (As req)
Estimate the moment arm z with $\mathrm{z}=0.95 \mathrm{xd}$ (slab situation) $\mathrm{z}=0.95 \times 30.6875=29.153$
$\underline{M n}=\mathbf{M u} / \Phi=\operatorname{As~} \mathrm{xfyx} \mathbf{z}$ (Replace z with (d - a/2) to get As)
Covert Unit (ft-kips to in-pounds)
$\mathrm{As}=\mathrm{Mu} /(\Phi \mathrm{x}$ fyx z$)$
$=563.19375 \times 1000 \times 12 /(0.9 \times 60000 \times 29.153)$
$=4.293 \mathrm{in}^{2}$
Repeat until As is within the 2% accuracy
Use As to get a:
$\mathrm{a}=$ As $\times \mathrm{fy} /(0.85 \times \mathrm{fc} \times \mathrm{b})=4.293 \times 60000 /(0.85 \times 4500 \times 20)=3.367 \mathrm{in}$ Q6
Use a to get new As:
$\mathrm{As}=\mathrm{Mu} /(\Phi \mathrm{x}$ fyx $(\mathrm{d}-\mathrm{a} / 2))$
$=563.19375 \times 1000 \times 12 /(0.9 \times 60000 \times(30.6875-3.367 / 2))$
$=4.315$ in
Check if it's within 2% accuracy:
(4.315-4.293) / 4.293 $=0.005<0.02$, It's a pass!

As req $=\underline{4.315 \text { in }^{2}}$

$$
M_{n}=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

3. Estimate moment arm $z=j d$, for beams $j \approx 0.9$ for slabs $j \approx 0.95$
4. Estimate A_{s} based on estimate of jd.
5. Use As to find a
6. Use a to find A_{s} (repeat...until 2\% accuracy)
7. Choose bars for A_{s} and check A_{s} max \& min

Span of slab	18 FT
Span of beam	35 FT
Thickness of slab	11 IN
section width, b	20 IN
section height, h	33 IN
max. aggrigate size	0.75 N
bar size number	7
stirrup bar size number	3
concrete cover	1.5 IN
concrete ultimate strenath. fic	4500 PSI
steel yield strength, fy	60000 PSI
Floor Live Load	95 PSF

Q8: Number of Rebars Used

Use Table A. 2 to find the cross sectional area of the flexural bar,
As req / Cross sectional area of the flexural bar $=4.315 / 0.6=7.1916$
Round up $7.1916=\underline{8}$ rebars

Q9. Actual, Final Area of Flexural Steel Used (As used)

As used
$=$ Cross sectional area of flexural steel x number of rebars
$=0.6 \times 8=\underline{4.8}$ in 2

Table A. 2 Designations, Areas, Perimeters, and Weights of Standard Bars

Bar No.	Customay Units			Diameter(mm)	SI UnitsCross-sectionalArea $\left(\mathrm{mm}^{2}\right)$	
	Diameter (in.)	Crosssectional Area in. ${ }^{2}$)	Unit Weight (lb/ft)			Unit Weight (kg/m)
3	0.375	0.11	$0.3 \overline{76}$	9.52	71	0.560
4	0.500	0.20	0.668	12.70	129	0.994
5	0.625	0.31	1.043	15.88	200	1.552
6	0.750	0.44	1.502	19.05	284	2.235
7	0.875	0.60	2.044	22.22	387	3.042
8	1.000	0.79	2.670	25.40	510	3.973
9	1.128	1.00	3.400	28.65	645	5.060
10	1.270	1.27	4.303	32.26	819	6.404
11	1.410	1.56	5.313	35.81	1006	7.907
14	1.693	2.25	7.650	43.00	1452	11.384
18	2.257	4.00	13.600	57.33	2581	20.238

Q10: Minimum Required Area of Steel (As min)

Calculate the two formulas and choose the bigger one:
$\left(3 \times\left(\mathrm{fc}^{3}\right)^{0.5} / \mathrm{fy}\right) \times \mathrm{b} \times \mathrm{d}=3 \times 4500^{0.5} / 60000 \times 20 \times 30.6875=2.0586$

$200 / \mathrm{fy} \times \mathrm{bxd}=200 / 60000 \times 20 \times 30.6875=2.0458$

Since $2.0586>2.0458, \underline{\text { As } \min }=2.0586$ in 2

DATASET: 1
Span of slab

concrete cover

$\mathrm{As}_{\text {min }}$:

greater of (a) and (b)
(a) $\frac{3 \sqrt{f_{c}^{\prime}}}{f_{y}} b_{w} d$
(b) $\frac{200}{f_{y}} b_{w} d$

Q11: Depth of Concrete Stress Block (a)

\quad Q9
$\underline{\mathrm{a}=(\text { As } \times \mathrm{fy}) /\left(0.85 \times \mathrm{fc}^{\prime} \times \mathrm{b}\right)}$
$=(4.8 \times 60000) /(0.85 \times 4500 \times 20)$
$=\underline{3.7647 \mathrm{in}}$

Q12: Factor Beta 1 ($\beta 1$)
$\beta 1=0.85-0.05 \mathrm{x}\left(\left(f c^{\prime}-4000\right) / 1000\right)$

\boldsymbol{f}^{\prime}	$\boldsymbol{\beta}_{\mathbf{c}}$
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

DATASET: 1
Span of slab

section height, h

$$
=0.85-0.05 \times((4500-4000) / 1000)=\underline{\mathbf{0 . 8 2 5}}
$$

Q13: Distance to Neutral Axis from Top of the Beam (c)

$$
\underline{c}=\mathrm{a} / \beta 1=3.7647 / 0.825=\underline{4.5633} \mathrm{in}
$$

$$
.65
$$

$$
{\underset{\tau}{0}}_{0.55}^{0.65} 0 . \underbrace{0.85-0.05\left(\frac{f_{c}^{\prime}-4000}{1000}\right)}_{\frac{1}{6}} \geq 0.65
$$

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

$$
a=\beta_{1} c
$$

Q14: Strain in Flexural Steel ($\varepsilon \mathrm{t}$)
$\underline{\varepsilon t}=(\mathrm{d}-\mathrm{c}) / \mathrm{c} \mathrm{x}(0.003)=(30.6875-4.5633) / 4.5633 \times 0.003=\underline{\mathbf{0 . 0 1 7 1 7}}$
Span of slab Span of beam Thickness of slab section width, b section height, h max. aggrigate size bar size number stirrup bar size number

$$
\underline{T}=\mathrm{As} \times \mathrm{fy}=4.8 \times 60000 / 1000=\underline{\mathbf{2 8 8} \mathbf{k}}
$$

$$
\varepsilon_{t}=\frac{d-c}{c}(0.003)
$$

Q17: The Nominal Bending Moment (Mn)

$\mathrm{Mn}=\mathrm{T} \times(\mathrm{d}-(\mathrm{a} / 2))=288 \times(30.6875-3.7647 / 2)=\underline{8295.88} \mathrm{k}$-in

Q18: The Factored Bending Resistance ($\mathbf{\Phi M n}$)
$\Phi \mathrm{Mn}=0.9 \times 8295.88 / 12=\underline{\mathbf{6 2 2} .19 \mathrm{k}-\mathrm{ft}}$

> Covert Unit (in to ft)

$$
M_{n}=T\left(d-\frac{a}{2}\right)=A_{s} f_{y}\left(d-\frac{a}{2}\right)
$$

Woah, deja vu

Reinforcement Placement

Description

This project produces a graphic representation of the reinforcing layout of a concrete beam.

Goals

To determine bar diameters and horizontal spacing
To find the placement and dimensions of a shear stirrup.
To establish proper cover for reinforcement.
To draw all beam elements in the proper scale and location.

Procedure

1. For the example beam worked in class, determine the required spacing, s_{v} and s_{h}, for the bar size used.
2. For the given stirrup size determine the bend radius for a 90° bend.
3. Make a sketch showing the proper locations of bars and the stirrup including cover.
4. Draw and dimension the depth of the stress block, "a" and the distance to the N.A. from the top of the beam, "c".
5. Dimension and label "d" and "dc".

Table 25.3.2-Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

$\begin{array}{\|l\|} \hline \text { Type of stan- } \\ \text { dard heok } \\ \hline \end{array}$	Barsize	Minimum inside bend diameter, in.	Straight extension ${ }^{\text {III }}$ $t_{\text {cur }}$ in.	Type of standara hook
90-degree hook	No. 3 through No. 5	$4 d_{b}$	Greater of $6 d_{b}$ and 3 in .	
	No. 6 through No. 8	$6 d_{b}$	$12 d_{s}$	
135-degreehook	through No. 5	$4 d_{b}$	Greater of $6 d_{b}$ and 3 in .	
	No. 6 through No. 8	$6 d_{b}$		
$\begin{aligned} & \text { 180-degree } \\ & \text { hook } \end{aligned}$	No. 3 through No. 5	$4 d_{\text {b }}$	Greater of $4 d_{b}$ and 2.5 in .	
	No. 6 through No. 8	$6 d_{b}$		

be permited to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the
anchorage capacity of the hook.
$\mathrm{Fc}^{\prime}=3000 \mathrm{psi}$
$\mathrm{Fy}=\mathbf{6 0 0 0 0} \mathrm{psi}$
d, agg $\max =3 / 4$ in

Details of Reinforcement

ACI 318 Chapter 25.2
Placement of Reinforcement

- \quad Cover (ACI 20.6.1)

Stirrup = \#4
Flexural Bar = \#9
Steel Bar Number $=4$

Concrete Cover $=1.5$ in
Section Width $=15$ in
Section Height $=36$ in

$\boldsymbol{f}_{c}^{\prime}$	β_{1}
0	0.85
1000	0.85
2000	0.85
3000	0.85
4000	0.85
5000	0.8
6000	0.75
7000	0.7
8000	0.65
9000	0.65
10000	0.65

$$
\begin{gathered}
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b} \\
c=\frac{a}{\beta_{1}}
\end{gathered}
$$

- Horizontal spacing in beams, $\mathrm{s}_{\mathrm{h}}(\mathrm{ACl} 25.2 .1)$ 1 inch
d_{b}
$4 / 3 d_{\text {agg,max }}$
- Vertical spacing in beams (ACl 25.2.2) Min 1 inch

Bar size designa- tion	Nominal cross section area. sq. in.	Weight. lb per $f t$	Nominal diameter. in.
$\# 3$	0.11	0.376	0.375
$\# 4$	0.20	0.668	0.500
$\# 5$	0.31	1.043	0.625
$\# 6$	0.44	1.502	0.750
$\# 7$	0.60	2.044	0.875
$\# 8$	0.79	2.670	1.000
$\# 9$	1.00	3.400	1.128
$\# 10$	1.27	4.303	1.270
$\# 11$	1.56	5.313	1.410
$\# 14$	2.25	7.650	1.693
$\# 18$	4.00	13.600	2.257

$12^{\prime \prime} 15^{\prime}$

