Composite Sections 4/5
HW - Composite Sections

Structure II
 Section 004

Yifan Ma
yifanma@umich.edu

10. Composite Sections

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is > Mu.

DATASET: 1 -2- -3-

W-section	W16X77
span A	49 FT
span B	11 FT
slab thickness, t	6 IN
steel yield stress, Fy	50 KSI
concrete ultimate stress, fic	3 KSI

Data:
Slab and beam geometry
W-section size and steel grade(floor loads)

1. Determine effective flange width, be
2. Calculate the effective depth of the concrete stress block, a

3. If a is within concrete slab, the full steel section is in tension and:
$\mathrm{Mn}=\mathrm{Mp}=$ As Fy ($\mathrm{d} / 2+\mathrm{t}-\mathrm{a} / 2$)
4. $\mathrm{Mu} \leq \phi \mathrm{Mn}$
5. Use Mu to calculate factored loads with appropriate beam moment equation

Required:

Capacities

3. If a is within steel section, the part below the Plastic Neutral Axis (PNA) is in tension and everything above the PNA is in compression (the steel and the concrete)
4. Check if PNA falls within flange or web of the W-section
5. Find \bar{y} by equating $\mathrm{T}=\mathrm{C}$
6. $\mathrm{Mn}=\mathrm{Mp}=\mathrm{C} 1(\mathrm{z} 1)+\mathrm{C} 2(\mathrm{z} 2)+$ T(z3)
7. $\mathrm{Mu}=\phi \mathrm{Mn}$

10. Composite Sections

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor toad from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is > Mu.

DATASET: 1	$-2-$	$-3-$	
W-section			
span A		49 FT	
span B		11 FT	
slab thickness, t	6 IN		
steel yield stress, Fy	50 KSI		
concrete ultimate stress, flc	3 KSI		

1. Effective width of the concrete flange, be

 AISC14 Table 1-1be is the least total width :
(1) Total width: $1 / 4$ of the beam span
(2) Overhang: $8 x$ slab thickness
(3) Overhang: $1 / 2$ the clear distance to next beam (i.e. be

(1) $1 / 4$ * $\operatorname{span} A=1 / 4 \times 49 * 12=$ 147 in
(2) 8 * t * $2+$ flange width $=8$ x $6 \times 2+10.3=106.3 \mathrm{IN}$
(3) Span B =11 FT = 121 IN

$$
\text { be }=106.3 \text { in }
$$

10. Composite Sections

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is $>$ Mu.
DATASET: 1

W-section

span A
span B
slab thickness, t
49 FT
11 FT
6 IN
steel yield stress, Fy

$$
50 \text { KSI }
$$

$$
3 \mathrm{KSI}
$$

2. Depth of concrete stress block,a

$$
a=\frac{A_{s} f_{y}}{0.85 f_{s}^{\prime} b}=22.6 * 50000 /\left(0.85^{*} 3000 * 106.3\right)=4.17 \mathrm{in}
$$

3. Is depth a within the slab? $1=$ yes, $0=$ no

$$
\mathrm{a}=4.17 \mathrm{in}<\mathrm{t}=6 \text { in, } 1
$$

10. Composite Sections

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is > Mu.

DATASET: 1

W-section
span A
span B

4. The nominal bending moment, Mn

$\mathrm{Mn}=\mathrm{As} * \mathrm{Fy}^{*}(\mathrm{~d} / 2+\mathrm{t}-\mathrm{a} / 2)=22.6 \times 50 \times(16.5 / 2+6-4.17 / 2)=$ 13746.45 k-in

5. The factored bending resistance, phi Mn

$$
\phi^{*} \mathrm{Mn}=0.9 \times 13746.45=12371.81 \mathrm{k}-\mathrm{in}
$$

6. The factored design moment, Mu

$M u \leq \phi M n$

$$
\mathrm{Mu}=\phi^{*} \mathrm{Mn}=12371.81 / 12=1030.98 \mathrm{k}-\mathrm{ft}
$$

10. Composite Sections

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is > Mu.

```
DATASET: 1 --2. -3-
W-section
span A
49 FT
span B
slab thickness, t
11 FT
steel yield stress, Fy
concrete ultimate stress, flc
W16X77

7. The total factored design load, wu
\[
\begin{aligned}
& \mathrm{Mu}=\mathrm{wu}^{*}(\text { SpanA^2)/8 } \\
& \mathrm{wu}=8 * \mathrm{Mu} /\left(\mathrm{SpanA}^{\wedge} 2\right)=8 \times 1030.98 /\left(49^{\wedge} 2\right)=3.435(\mathrm{KLF})
\end{aligned}
\]
8. The self weight of the concrete slab
\[
\mathrm{t} * 150(\mathrm{PCF})=6 / 12 \times 150=75(\mathrm{PSF})
\]
9. The total (steel+concrete) unfactored dead load on the beam, w_DL w_DL= weight of the concrete slab * Span B + beam weight
\[
=\left(75^{*} 11+77\right) / 1000=0.902 \mathrm{klf}
\]

\section*{10. Composite Sections}

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is > Mu.
```

DATASET: 1 --2. --3-
W-section
span A
span B
4 9 ~ F T
slab thickness, t
steel yield stress, Fy }50\mathrm{ KSI
concrete ultimate stress, f'c 3 KSI

```

10. The actual, unfactored beam live load(capacity),w_LL
\[
\begin{aligned}
& w u=1.2^{*} \mathrm{DL}+1.6^{*} \mathrm{LL}=3.435 \mathrm{klf} \\
& w_{-} \mathrm{LL}=\left(\mathrm{wu}-1.2^{*} \mathrm{wDL}\right) / 1.6=\left(3.435-1.2^{*} 0.902\right) / 1.6=1.47 \mathrm{klf}
\end{aligned}
\]
11. The actual floor live load(floor capacity),LL
\[
\text { LL = w_LL / SpanB= 1.47/11 *1000 = } 133.63 \text { psf }
\]

\section*{LAB - Composite Sections}

\section*{Description}

This project allows the students to observe the difference in stiffness between Composite and NonComposite beam slab combinations

\section*{Goals}

To observe the bending behavior of nonconnected beams and slabs To observe the bending behavior of a composite section.
To compare the deflection of the two systems.


\section*{Procedure}
1. Place the chipboard slab on the foam beam but do not attach the end clips
2. Place the 10 washer weights in the center and measure the deflection.
3. Repeat the procedure but now with the ends of the slab and the beam clipped together.
4. Again, measure the deflection.
5. Compare the deflections of the two systems.

\section*{Any Questions?}
yifanma@umich.edu

Thank You!
```

