Structure II Recitation 4/5

Composite Section

Before we start ...

Today's Tasks:

Homework Example (Composite Section)
Lab Session (Composite Section)

Reminder:

Final Report Due Date: 4/12!!!!!!!!!!

PRELIMINARY REPORT (re-submit with final report)	40	
TESTING	60	
Tower weight $\leq 40 \mathrm{z}$ (15 pts); height $=48^{\prime \prime}(5 \mathrm{pts})$; holds $\geq 50 \mathrm{lbs}(5 \mathrm{pts})$ Correct Materials (5 pts) (scaled if doesn't meet requirements)	30	
Efficiency (4/weight OZ) $+($ load LBS/50) + (load LBS/weight OZ) $\times 1.5$ (scaled based on class rank)	30	
FINAL REPORT REQUIREMENTS	150	
Preliminary Design Development	20	
How cross-sectional design of preliminary tower was chosen	4	
How elevation of preliminary tower was developed (e.g. bracing, taper, etc.)	4	
Why/how cross-section was or was not adjusted from preliminary report	4	
Why/how elevation of tower was or was not adjusted from preliminary report	4	
Discussion of how basic principles of columns supported these decisions	4	
Revised/Tested Tower Design Analysis [SHOW WORK AND UNITS]]	50	
Calculated/modeled axial forces and derivation of required member crosssectional areas from axial forces (consider both crushing and buckling)	10	
Estimated weight calculation using actual member sizes used - include weight from members, glue, and gussets, etc.	7	
Member properties table: A, r, L, slenderness ratio (L/r), utilization ratio (actual load / allowable load)	7	
Indicate critical member (largest utilization ratio)	8	
Tower stability (as a whole)- buckling calculation	8	
Prediction of capacity of tower and mode of failure	10	
Illustration of Final/Tested Design	20	
Cross-section and elevations(s) of tower	5	
Perspective(s) or isometric of tower (no screenshots!)	5	
Overall dimensions labeled (height, width, etc.) with units	5	
Member sizes labeled (cross-sectional area, length of vertical members and cross-bracing) with units	5	
Testing Results	30	
Final weight and height of tower	6	
Tested capacity of tower	6	
Observations of testing (loading, any buckling observed, etc.)	6	
Description of mode of failure	6	
Images of failure	6	
Post-Testing Analysis	30	
Comparison of testing results with predicted capacity and modes of failure	10	
Discussion of discrepancies between results	10	
Suggested improvements for future designs with reasoning discussed	10	
FINAL GRADE	250	

Using the strength method, determine the required amount of flexural steel reinforcement, As, for the simple span beam (shown in section). The beam carries a dead and live floor load from a one-way slab in addition to its own self weight at 150 PCF. For the given bar size, determine the number of bars to obtain the required As. Check As,min and epsilon_t. Calculate the strength moment, Mn for the final beam design and check that phi Mn is $>\mathrm{Mu}$.

DATASET: 1 -2- $-3-$

W-section
W18X71
span A
57 FT
span B
12 FT
slab thickness, $\mathrm{t} \quad 9$ IN
steel yield stress, Fy
50 KSI
concrete ultimate stress, fic 7 KSI

Analysis Procedure (LRFD)
 \section*{Case - PNA within slab}

Given: Slab and beam geometry W-section size and steel grade (floor loads)
Find: pass/fail or capacities

1. Define effective flange width, b_{e}

2. Calculate the effective depth of the concrete stress block, a

$$
T=C
$$

3. If a is within concrete slab, the full steel section is in tension and:

$$
\begin{aligned}
& M p=T z \\
& M n=M p=A s F y(d / 2+t-a / 2)
\end{aligned}
$$

$$
\begin{aligned}
A_{s} f_{y} & =0.85 f_{c}^{\prime} a b_{e} \\
a & =\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b_{e}}
\end{aligned}
$$

4. $\mathrm{Mu} \leq \phi \mathrm{Mn}$
be -a - Mu - wu - DL - LL

Table 1-1 (continued)

W-Shapes

Dimensions

Shape	$\begin{array}{\|c\|} \hline \text { Area, } \\ A \\ \hline \text { in. }^{2} \\ \hline \end{array}$	Depth, d		Web			Flange				Distance					Nominal Wt.	Compact Section Criteria					
				Thickness, t_{w}		$\frac{t_{w}}{2}$	Width, b_{f}		$\begin{gathered} \text { Thickness, } \\ t_{f} \end{gathered}$		k		k_{1}	T	Workable Gage							
				$k_{\text {des }}$	$k_{\text {det }}$				$\mathrm{b}_{\text {f }}$	h												
		in.				in.		in.			in.		in.		in.	in.	in.	in.	in.	lb/t	$2 t_{t}$	$t_{\text {w }}$
W 21×93	27.3	21.6	215/8	0.580	9/16	$5 / 16$	8.42	$8^{3 / 8}$	0.930	15/16	1.43	$15 / 8$	15/16	$18^{3 / 8}$	$51 / 2$	9	4.53	32.3				
$\times 83{ }^{\text {c }}$	24.4	21.4	$213 / 8$	0.515	$1 / 2$	$1 / 4$	8.36	83/8	0.835	13/16	1.34	$11 / 2$	7/8			8.	5.00	36.4				
$\times 73^{\text {c }}$	21.5	21.2	211/4	0.455	7/16	$1 / 4$	8.30	$81 / 4$	0.740	$3 / 4$	1.24	17/16	7/8			7.	5.60	41.2				
$\times 68{ }^{\text {c }}$	20.0	21.1	$211 / 8$	0.430	7/16	$1 / 4$	8.27	$81 / 4$	0.685	11/16	1.19	$13 / 8$	7/8			6.	6.04	43.6				
$\times 62^{\text {c }}$	18.3	21.0	21	0.400	$3 / 8$	$3 / 16$	8.24	$81 / 4$	0.615	$5 / 8$	1.12	15/16	13/16			62	6.70	46.9				
$\times 55^{\text {c }}$	16.2	20.8	$20^{3 / 4}$	0.375	$3 / 8$	$3 / 16$	8.22	$81 / 4$	0.522	$1 / 2$	1.02	$13 / 16$	13/16			$5{ }^{\circ}$	7.87	50.0				
$\times 48^{\text {c,f }}$	14.1	20.6	205/8	0.350	$3 / 8$	$3 / 16$	8. 14	81/8	0.430	7/16	0.930	$11 / 8$	13/16	γ	γ	4β	9.47	53.6				
W $21 \times 57^{\text {c }}$	16.7	21.1	21	0.405	$3 / 8$	$3 / 16$	6.56	$61 / 2$	0.650	5/8	1.15	15/16	13/16	183/8	$3^{1 / 2}$	57	5.04	46.3				
$\times 50^{\text {c }}$	14.7	20.8	207/8	0.380	$3 / 8$	$3 / 16$	6.53	$61 / 2$	0.535	9/16	1.04	$11 / 4$	13/16			50	6.10	49.4				
$\times 44^{\text {c }}$	13.0	20.7	205/8	0.350	$3 / 8$	$3 / 16$	6.50	$61 / 2$	0.450	7/16	0.950	$11 / 8$	13/16	γ	γ	44	7.22	53.6				
W18×311 ${ }^{\text {h }}$	91.6	22.3	$22^{3 / 8}$	1.52	$11 / 2$	$3 / 4$	12.0	12	2.74	$2^{3 / 4}$	3.24	$3^{7 / 16}$	$13 / 8$	$15^{1 / 2}$	$51 / 2$	311	2.19	10.4				
$\times 283^{\text {h }}$	83.3	21.9	217/8	1.40	$13 / 8$	11/16	11.9	117/8	2.50	$2^{1 / 2}$	3.00	$33 / 16$	15/16			283	2.38	11.3				
$\times 258{ }^{\text {h }}$	76.0	21.5	$211 / 2$	1.28	11/4	5/8	11.8	113/4	2.30	$2^{5 / 16}$	2.70	3	$11 / 4$			258	2.56	12.5				
$\times 234{ }^{\text {h }}$	68.6	21.1	21	1.16	$13 / 16$	5/8	11.7	115/8	2.11	21/8	2.51	$2^{3 / 4}$	$13 / 16$			234	2.76	13.8				
$\times 211$	62.3	20.7	205/8	1.06	11/16	9/16	11.6	$11^{1 / 2}$	1.91	$1^{15} / 16$	2.31	29/16	$13 / 16$	v		211	3.02	15.1				
$\times 192$	50.2	20.4	$20^{3 / 8}$	0.960	15/16	1/2	11.5	111/2	1.75	$13 / 4$	2.15	$2^{7 / 16}$	11/8	γ		192	3.27	16.7				
$\times 175$	51.4	20.0	20	0.890	7/8	7/16	11.4	113/8	1.59	19/16	1.99	$2^{7 / 16}$	$11 / 4$	151/8		175	3.58	18.0				
$\times 158$	46.3	19.7	193/4	0.810	13/16	7/16	11.3	$111 / 4$	1.44	17/16	1.84	$2^{3 / 8}$	$1 \frac{1 / 4}{}$			158	3.92	19.8				
$\times 143$	42.0	19.5	191/2	0.730	$3 / 4$	$3 / 8$	11.2	$111 / 4$	1.32	15/18	1.72	$2^{3 / 16}$	$13 / 16$			143	4.25	22.0				
$\times 130$	38.3	15.3	191/4	0.670	11/16	$3 / 8$	11.2	111/8	1.20	$13 / 16$	1.60	$2^{1 / 16}$	$13 / 16$			130	4.65	23.9				
$\times 119$	35.1	19.0	19	0.655	5/8	5/16	11.3	111/4	1.06	11/16	1.46	15/18	$13 / 16$			1.9	5.31	24.5				
$\times 106$	31.1	18.7	$18^{3 / 4}$	0.590	9/16	5/16	11.2	111/4	0.940	15/16	1.34	$13 / 18$	$11 / 8$			146	5.96	27.2				
$\times 97$	28.5	18.6	185/8	0.535	$9 / 18$	5/16	11.1	111/8	0.870	7/8	1.27	$13 / 4$	$11 / 8$			$\$ 7$	6.41	30.0				
$\times 86$	25.3	18.4	183/8	0.480	1/2	$1 / 4$	11.1	111/8	0.770	$3 / 4$	1.17	15/8	$11 / 16$	v	\checkmark	¢ 6	7.20	33.4				
$\times 76{ }^{\text {c }}$	24.3	18.2	181/4	0.425	$7 / 16$	$1 / 4$	11.0	11	0.680	11/16	1.08	19/16	$11 / 16$	Y	γ	76	8.11	1 37.8				
W18×71	20.9	18.5	181/2	0.495	1/2	$1 / 4$	7.64	75/8	0.810	13/16	1.21	$11 / 2$	7/8	$15^{1 / 2}$	$31 / 2^{9}$	71	4.71	132.4				
$\times 65$	19.1	18.4	$18^{3 / 8}$	0.450	7/16	$1 / 4$	7.59	$7{ }^{5 / 8}$	0.750	$3 / 4$	1.15	17/16	7/8			65	5.06	635.7				
																60		38.7				

Look at AISC 14, Table 1-1 and get the values we need based on your W- Section type:

$$
\begin{gathered}
\text { Area }(\mathrm{A})=20.9 \mathrm{in}^{2} \\
\text { Depth }(\mathrm{d})=18.5 \mathrm{in} \\
\text { Width }(\mathrm{bf})=7.64 \mathrm{in} \\
\text { Nominal Weight }=71 \mathrm{lb} / \mathrm{ft}
\end{gathered}
$$

W-section
W18X71

```
span A
57 FT
span B
12 FT
slab thickness, t
9IN
steel yield stress, Fy
50 KSI
concrete ultimate stress, f'c
7 KSI
```

$\mathbf{b}_{\mathbf{e}}$ is the least total width :

- Total width: $1 / 4$ of the beam span
- Overhang: 8 x slab thickness
- Overhang: $1 / 2$ the clear distance to next beam (i.e. b_{e} is the web on center spacing)
 $2 \times(8 \times 9)+7.64=151.64$ in

Q1: Effective Width of the Concrete Flange (be)

Choose the smallest value of the three:
$1 / 4$ the span of the steel beam ($1 / 4 \times$ Span A)
$1 / 4 \times(57 \times 12)=171$ in

Covert Unit (ft to in)

Q2: Depth of Concrete Stress Block (a)

AISC 14, Table 1-1

$=\underline{\text { As x fy } / 0.85 \times \mathrm{xf}} \mathbf{x} \mathbf{x}$
$=20.9 \times 50000 / 0.85 \times 7000 \times 144$
$=\underline{\mathbf{1 . 2 1 9 6 5} \mathrm{in}}$

$$
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
$$

Q3: Is Depth (a) Within the Slab?

See if a is smaller than slab thickness, For my situation, a (1.21965 in) $<\mathrm{t}(9 \mathrm{in})$

Answer $=\underline{\text { Yes! }}$
be (from Q1)

W-section
W18X71

span A

$$
=20.9 \times 50000 \times(18.5 / 2+9-1.21965 / 2) / 1000
$$

Q5: The Factored Bending Resistance ($\mathbf{\Phi M n}$)

9 IN 50 KSI
7 KSI

$$
=18433.98 \mathrm{k} \text {-in }
$$

AISC 14, Table 1-1
$0.9 \times \mathrm{Mn}=0.9 \times 18433.98=\underline{\mathbf{1 6 5 9 0}} \mathbf{. 5 8 \mathrm { k } - \mathrm { in }}$

Q6: The Factored Design Moment (Mu)

$$
\mathrm{Mu}=\Phi \mathrm{Mn} / 12=16590.58 / 12=\underline{\mathbf{1 3 8}} \mathbf{2} .548 \mathbf{k}-\mathrm{ft}
$$

W-section
W18X71
span A 57 FT
$\mathrm{Mu}=\mathrm{wu} \times \mathrm{L}^{2} / 8$
$w u=M u \times 8 / L^{2}=1382.548 \times 8 / 57^{2}=\underline{3.4042} \mathbf{K L F}$
steel yield stress, Fy

Q9: The Total Unfactored Dead Load (Concrete+Steel) on the Beam (w_DL) w_DL

$$
\begin{aligned}
& =\mathrm{DL}(\text { Concrete })+\mathrm{DL} \text { (Steel) } \\
& =((112.5 \times 12)+(71)) / 1000=\underline{\mathbf{1 . 4 2 1} \mathbf{K L F}}
\end{aligned}
$$

$$
M_{u}=\frac{\left(1.2 w_{D L}+1.6 w_{L L}\right) l^{2}}{8}
$$

Q10: The Actual Unfactored Beam Live Load (w_LL)
$\mathrm{wu}=1.2\left(\mathrm{w}_{-} \mathrm{DL}\right)+1.6\left(\mathrm{w}_{-} \mathrm{LL}\right)$
w_LL
= (wu - 1.2 (w_DL)) / 1.6
$=(3.4042-1.2 \times 1.421) / 1.6$
$=\underline{\mathbf{1 . 0 6 1 9} \mathrm{KLF}}$

Area (A) $=20.9$ in 2
Depth (d) $=18.5$ in
Width (bf) $=7.64$ in Nominal Weight $=71 \mathrm{lb} / \mathrm{ft}$

Q11: The Actual Floor Live Load (Floor Capacity) (LL)

$$
\mathrm{LL}=\mathrm{w} _L L / S p a n B=1.0619 / 12 \times 1000=\underline{\mathbf{8 8} .492} \mathbf{P S F}
$$

$$
M_{u}=\frac{\left(1.2 w_{D L}+1.6 w_{L L}\right) l^{2}}{8}
$$

Goals

To observe the bending behavior of non-connected beams and slabs To observe the bending behavior of a composite section.
To compare the deflection of the two systems.

Procedure

1. Place the chipboard slab on the foam beam but do not attach the end clips.
2. Place the 10 washer weights in the center and measure the deflection.
3. Repeat the procedure but now with the ends of the slab and the beam clipped together.
4. Again, measure the deflection.
5. Compare the deflections of the two systems.
