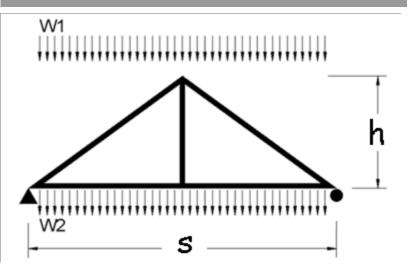
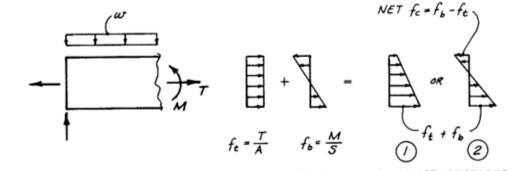

Combined Stress 4/19

HW – Combined Stress


Lab - Combined Stress

Structure II Section 004

Yifan Ma yifanma@umich.edu


DATASET: 1 -23-	
Full span of truss	13 FT
Height of truss	5 FT
On Center spacing of trusses	24 IN
Size of bottom chord	2x8
Actual width, b	1.5 IN
Actual depth, d	7.25 IN
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	35 PSF
Factored allowable bending stress, F'b	1064 PSI
Factored allowable tension stress, F't	633 PSI

HW - Combined Stress

Data: geometry, load

Required: pass or fail

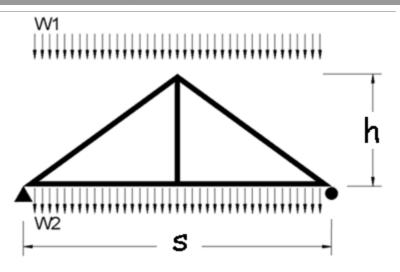
- 1.Determine truss joint loading
- 2.Determine the external end reactions of the whole truss.
- 3.Use an FBD of the reaction joint to find the chord forces. Sum the forces horizontal and vertical to find the components.
- 4. Calculate the actual axial and flexural stress.
- 5.Determine allowable stresses using applicable factors
- 6.Check NDS equations

3.9.1 Bending and Axial Tension

Members subjected to a combination of bending and axial tension (see Figure 3G) shall be so proportioned that:

$$\frac{f_t}{f_t} + \frac{f_b}{f_b^*} \le 1.0$$
 TENSION CRIT. (3.9-1)

and


$$\frac{f_b - f_t}{F_b} \le 1.0$$
 FLEXURE CRIT. (3.9-2)

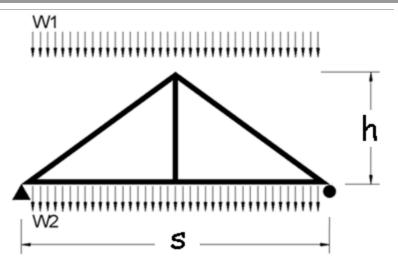
where:

F_b = reference bending design value multiplied by all applicable adjustment factors except C_L

F_b" = reference bending design value multiplied by all applicable adjustment factors except C_v

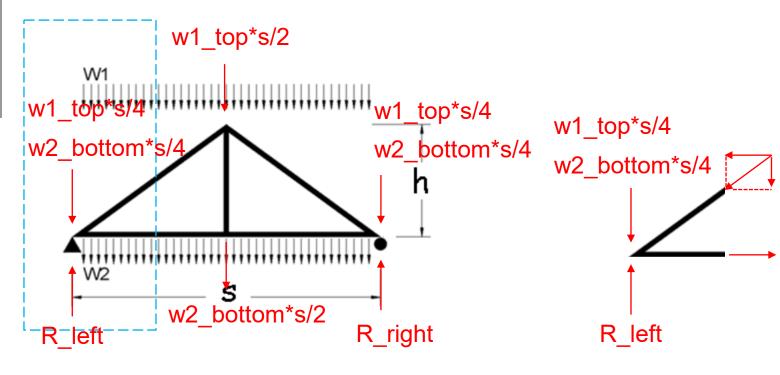
DATASET: 1 -23-	
Full span of truss	13 FT
Height of truss	5 FT
On Center spacing of trusses	24 IN
Size of bottom chord	2x8
Actual width, b	1.5 IN
Actual depth, d	7.25 IN
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	35 PSF
Factored allowable bending stress, F'b	1064 PSI
Factored allowable tension stress, F't	633 PSI

1. Load on one truss-top chord, w1

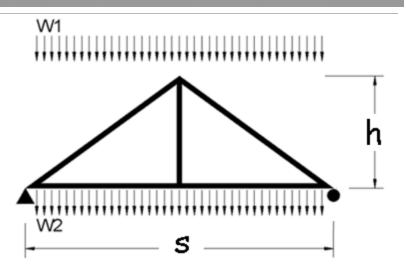

$$w1_{top} = w1(area) * o.c.spacing = 30*24/12 = 60 plf$$

2. Load on one truss-bottom chord, w2

$$w2_bottom = w2(area) * o.c. spacing = 35*24/12 = 70 plf$$


3. Total left reaction due to total load (w1 and w2)

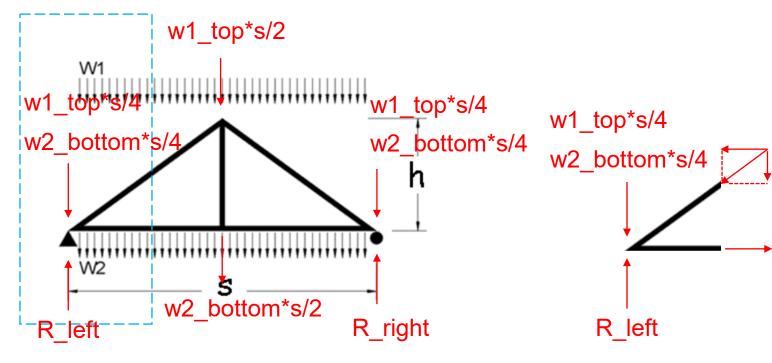
DATASET: 1 -23-	
Full span of truss	13 FT
Height of truss	5 FT
On Center spacing of trusses	24 IN
Size of bottom chord	2x8
Actual width, b	1.5 IN
Actual depth, d	7.25 IN
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	35 PSF
Factored allowable bending stress, F'b	1064 PSI
Factored allowable tension stress, F't	633 PSI



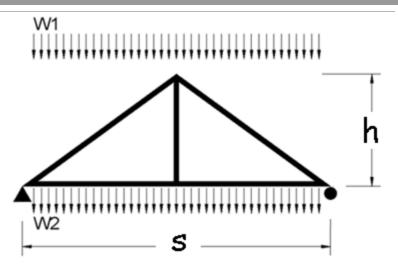
4. Vertical force component in truss top chord (no sign)

$$\sum Fv = Fv_{top} + w1_{top}*s/4 + w2_{bottom}*s/4 - R_{left} = 0$$

DATASET: 1 -23-	
Full span of truss	13 FT
Height of truss	5 FT
On Center spacing of trusses	24 IN
Size of bottom chord	2x8
Actual width, b	1.5 IN
Actual depth, d	7.25 IN
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	35 PSF
Factored allowable bending stress, F'b	1064 PSI
Factored allowable tension stress, F't	633 PSI


5. Horizontal force component in truss top chord(no sign)

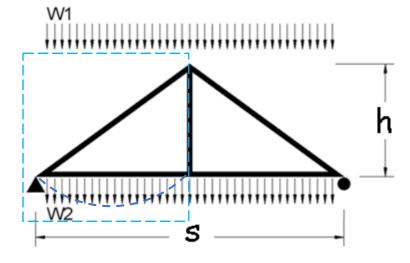
$$\frac{Fv_top}{Fh_top} = \frac{h}{s/2}$$


Fh_top =(
$$Fv_top * s/2$$
) /h = (422.5*13/2) / 5 = 549.25 lbs

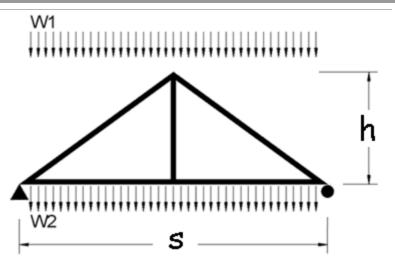
6. Axial force in the truss bottom chord(- if Compression)

$$\Sigma$$
Fh =Fh_bottom-Fh_top = 0

DATASET: 1 -23-	
Full span of truss	13 FT
Height of truss	5 FT
On Center spacing of trusses	24 IN
Size of bottom chord	2x8
Actual width, b	1.5 IN
Actual depth, d	7.25 IN
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	35 PSF
Factored allowable bending stress, F'b	1064 PSI
Factored allowable tension stress, F't	633 PSI


7. Area of the bottom chord member

Area_bottom =
$$b \times d = 1.5*7.25 = 10.875 \text{ in}^2$$


8. Axial stress in the bottom chord(-Compression)

9. Maximum bending moment in the bottom chord member

$$M = wl^2/8 = w2*(s/2)^2/8 = 70*(13/2)^2/8 = 369.69 \text{ ft-lbs}$$

DATASET: 1 -23-	
Full span of truss	13 FT
Height of truss	5 FT
On Center spacing of trusses	24 IN
Size of bottom chord	2x8
Actual width, b	1.5 IN
Actual depth, d	7.25 IN
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	35 PSF
Factored allowable bending stress, F'b	1064 PSI
Factored allowable tension stress, F't	633 PSI

10. Section modulus of the bottom chord member Sx

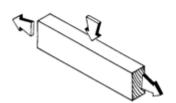
NDS supplement Table 1B


 $Sx = 13.14 \text{ in}^3$

			X->	(AXIS	Y-1	/ AXIS						
Nominal	Standard Dressed	Area of	Section	Moment of	Section	Moment of	Approximate weight in pounds per linear foot of piece when density of wood equa					
Size b x d	Size (S4S) b x d in. x in.	Section A in. ²	Modulus S _{xx} in. ³	Inertia I _{xx} in. ⁴	Modulus S _{yy} in. ³	Inertia I _{yy} in. ⁴	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
Boards ¹												
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	0.326	0.391	0.456	0.521	0.586	0.651
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123	0.456	0.547	0.638	0.729	0.820	0.911
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193	0.716	0.859	1.003	1.146	1.289	1.432
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255	0.944	1.133	1.322	1.510	1.699	1.888
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325	1.204	1.445	1.686	1.927	2.168	2.409
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930
	n Lumber (see N				NDS 4.1.3							
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901

11. Maximum bending stress in the bottom chord member

fb = M/Sx = 369.69*12/13.14 = 337.62 PSI


DATASET: 1 -23-	
Full span of truss	13 FT
Height of truss	5 FT
On Center spacing of trusses	24 IN
Size of bottom chord	2x8
Actual width, b	1.5 IN
Actual depth, d	7.25 IN
Snow Load on roof, w1	30 PSF
Live Load in attic, w2	35 PSF
Factored allowable bending stress, F'b	1064 PSI
Factored allowable tension stress, F't	633 PSI

12. Combined stress using NSD equation 3.9-1

$$ft/F't + fb/F'b = 50.51/633+337.62/1064$$

= 0.397 < 1

Figure 3G Combined Bending and Axial Tension

13.Combined stress using NSD equation 3.9-2

$$(fb-ft)/F'b = (337.62-50.51)/1064$$

= 0.270 < 1

14. Does member pass?

Pass,1

3.9.1 Bending and Axial Tension

Members subjected to a combination of bending and axial tension (see Figure 3G) shall be so proportioned that:

$$\frac{f_t}{F_t} + \frac{f_b}{F_b^*} \le 1.0$$
 TENSION CRIT. (3.9-1)

and

$$\frac{f_b - f_t}{F_b^{"}} \le 1.0$$
 FLEXURE CRIT. (3.9-2)

where:

F_b = reference bending design value multiplied by all applicable adjustment factors except C_L

F_b" = reference bending design value multiplied by all applicable adjustment factors except C_v

LAB – Combined Stress

Description

This project uses observation of a physical trial to see the effects of flexure combined with tension or compression.

Goals

To observe the behavior of tension + flexure
To observe the behavior of compression +
flexure

To estimate the addition of combined stress profiles

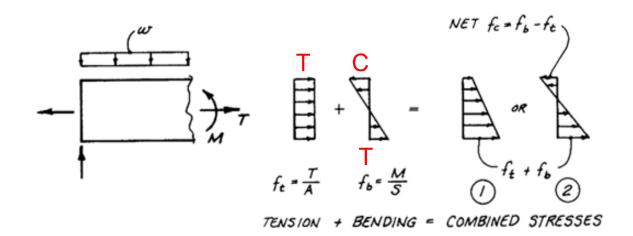
To observe the results of P + delta loading

Procedure

- Load the 12 inch wood stick with 4 washers at midspan as shown below. The stick is 1/16"x1/2" A=0.03125 in² Sy=0.0003255 in³ 4 washers = 0.15 lbs.
- Note the deflection caused by the load. Calculate the flexure stress.
- Next apply an additional axial tension force to the stick of approximately 10 lb (pull on it) and note the change in deflection. Calculate the additional axial stress.
- Make a sketch showing the addition of the stress profiles of flexure + tension.
- Now apply (or try) an axial compression load of approximately 10 lb to the stick and again note the change in deflection. Again calculate the axial stress.
- Make a sketch showing the addition of the stress profiles of flexure + compression.
- 7. What additional load and stress is being neglected in the case of compression + flexure?

$$M = \frac{P\,L}{4} \qquad f_b = \frac{M}{S_y} \qquad f_t = \frac{P}{A} \qquad f_c = \frac{P}{A} \qquad f_{comb} = \pm \frac{M}{S_y} \pm \frac{P}{A}$$

- Load the 12 inch wood stick with 4 washers at midspan as shown below. The stick is 1/16"x1/2" A=0.03125 in² Sy=0.0003255 in³ 4 washers = 0.15 lbs.
- Note the deflection caused by the load. Calculate the flexure stress.


$$M = PL/4 = 0.15*12/4 = 0.45 in-lbs$$

$$fb = M/Sy = 0.45/0.0003255 = 1382.49 psi$$

 Next apply an additional axial tension force to the stick of approximately 10 lb (pull on it) and note the change in deflection. Calculate the additional axial stress.

$$ft = P/A = 10/0.03125 = 320 psi$$

Make a sketch showing the addition of the stress profiles of flexure + tension.

Now apply (or try) an axial compression load of approximately 10 lb to the stick and again note the change in deflection. Again calculate the axial stress.

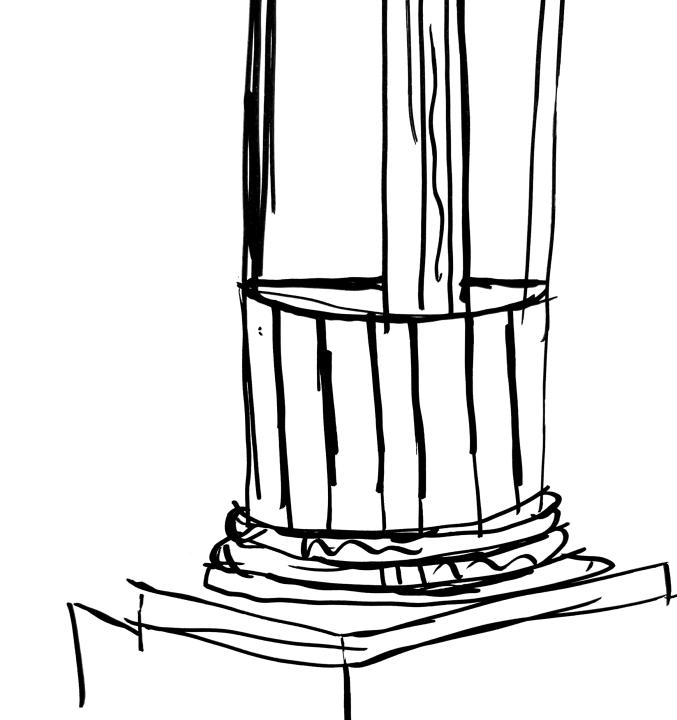
$$fc = P/A = 10/0.03125 = 320 psi$$

Make a sketch showing the addition of the stress profiles of flexure + compression.

7. What additional load and stress is being neglected in the case of compression + flexure?

Second Order Stress "P Delta Effect"

With larger deflections this can become significant.


- 1. Eccentric load causes bending moment
- 2. Bending moment causes deflection, Δ
- 3. $P \times \Delta$ causes additional moment

Any Questions?

yifanma@umich.edu

Thank You!

