Structure II Recitation 4/19

Combined Stress

Before we start ...

Today's Tasks:

Homework Example (Combined Stress)
Lab Session (Combined Stress)

12. Combined Stress

The given roof truss carries both an exterior snow load and an interior (attic) floor load. Determine the member forces and stresses and calculate the combined stress levels (top and bottom) for the lower chord member using the NDS combined stress equations. Consider all joints pinned, with simple (joint to joint) members. The given allowable stresses (F't and F'b) are for southern pine with all adjustment factors already applied.

DATASET: 1 -2- $-3-$

Full span of truss 23 FT
Height of truss 10 FT
On Center spacing of trusses $\quad 16$ IN
Size of bottom chord $\quad 4 \times 5$
Actual width, b $\quad 3.5 \mathrm{IN}$
Actual depth, d 4.5 IN
Snow Load on roof, w1 30 PSF
Live Load in attic, w2 85 PSF
Factored allowable bending stress, F'b 1150 PSI
Factored allowable tension stress, F't 690 PSI

Force, $\mathrm{M}, \mathrm{fb} \& \mathrm{ft}$, Combined Stress

Q1: Load on the Truss - Top Chord (W1)

$\mathrm{W} 1=\mathrm{w} 1 \times$ on center spacing $=30 \times 16 / 12=\underline{40 \text { PLF }}$ in to ft

Full span of truss 23 FT Height of truss 10 FT | On Center spacing of trusses | 16 IN |
| :--- | :--- | Size of bottom chord 4×5 Actual width, b 3.5 IN

Actual depth, d 4.5 IN

Snow Load on roof, w1 30 PSF
Live Load in attic, w2
85 PSF
Factored allowable bending stress, F'b 1150 PSI
Factored allowable tension stress, F't
690 PSI
$\mathrm{W} 2=\mathrm{w} 2 \mathrm{x}$ on center spacing $=85 \times 16 / 12=\underline{113.33 \text { PLF }}$

Q3: Total Left Reaction Due to W1 \& W2

$\sum \mathrm{F}_{\mathrm{v}}=0:$
Since Symmetric:
R = (W1 +W2) x Span / 2
$(40+113.33) \times 23 / 2=\underline{\mathbf{1 7 6 3 . 3} \mathbf{L B S}}$

Q5: Horizontal Force Component in Truss Top Chord (No Sign)

Look at the ratio:
$\mathrm{V} / \mathrm{H}=$ height $/$ half of span $=10 / 11.5$ $\mathrm{H}=\mathrm{V} / 10 \times 11.5=881.6 / 10 \times 11.5=\underline{\mathbf{1 0 1 3 . 9}} \mathbf{L B S}$

Q6: Axial Force in the Truss Bottom Chord $\sum \mathrm{FH}_{\mathrm{H}}=0$:
$\mathrm{R}_{\mathrm{H}}-\mathrm{H}=0$
$\mathrm{H}=$ 1013.9 LBS (Tension, since pulling out)

h R

Q7: Area of the Bottom Chord Member
$\underline{\text { Area }=\mathrm{bxd}}=3.5 \times 4.5=\underline{\mathbf{1 5 . 7 5} \mathrm{in}^{2}}$
Q8: Axial Stress in the Bottom Chord (ft)

Axial Stress $=$ Axial Force $/$ Area
Axial Stress $=1013.9 / 15.75=\underline{\mathbf{6 4 . 3}} \mathbf{3 7 5}$ PSI

Q9: Maximum Bending Moment in the Bottom Chord Member (fb)
Use Moment Equation:

$M=w \times L^{2} / 8=113.33 \times(1 / 2 \times 23)^{2} / 8=\underline{1873.5}$ FT-LBS

 $1 / 2$ span

Full span of truss
23 FT

Height of truss

On Center spacing of trusses 16 IN
Size of bottom chord 4×5
Actual width, b 3.5 IN

Actual depth, d
4.5 IN

Snow Load on roof, w1
30 PSF
Live Load in attic, w2 85 PSF
Factored allowable bending stress, F'b 1150 PSI
Factored allowable tension stress, F '
690 PSI

Q10: Section Modulus of the Bottom Chord Member (Sx)

$S x=1 / 6 \times \mathrm{bx} \mathrm{d}^{2}=1 / 6 \times 3.5 \times 4.5^{2}=\underline{\mathbf{1 1 . 8 1 2 5}} \mathbf{i n}^{3}$
Q11: Maximum Bending Stress in the Bottom Chord Member (fb)

Bending Stress $=M / S x=1873.5 \times 12 / 11.8125=\underline{1903.2}$ PSI

Q10

Sectional Modulus

Bending Stress

Q12: Combined Stress Using NSD Equation 3.9-1

$\mathrm{ft} / \mathrm{Ft}^{\prime}+\mathrm{fb} / \mathrm{Fb}^{\prime}=64.375 / \mathbf{6 9 0}+1903.2 / 1150=\underline{\mathbf{1 . 7 4 8}}$
$\dagger_{\text {Q8 }} \quad \uparrow$

Q13: Combined Stress Using NSD Equation 3.9-2

$(\mathrm{fb}-\mathrm{ft}) / \mathrm{Fb}^{\prime}=(1903.2-64.375) / 1150=\underline{\mathbf{1 . 5 9 9}}$

Q14: Does Member Pass?

Both Q12 \& Q13 have to <= 1
For my situation, It's a Fail!

Full span of truss
23 FT
Height of truss
On Center spacing of trusses
Size of bottom chord
Actual width, b
Actual depth, d
4.5 IN

Snow Load on roof, w1
30 PSF
Live Load in attic, w2 85 PSF
Factored allowable bending stress, F'b 1150 PSI
Factored allowable tension stress, F't
690 PSI

3.9.1 Bending and Axial Tension

Members subjected to a combination of bending and axial tension (see Figure 3G) shall be so proportioned that:

$$
\frac{f_{t}}{F^{\prime}}+\frac{f_{b}}{F_{b}^{*}} \leq 1.0 \quad \text { TENSION CRIT. }
$$

and
$\frac{\mathrm{f}_{\mathrm{b}}-\mathrm{f}_{\mathrm{t}}}{\mathrm{F}_{\mathrm{b}}^{*}} \leq 1.0 \quad$ FLEXURE CRIT. (3.9-2)
where:
$F_{b}^{*}=$ reference bending design value multiplied by all applicable adjustment factors except C_{L}
$F_{\mathrm{b}}{ }^{*}=$ reference bending design value multiplied by all applicable adjustment factors except C

Procedure

Load the 12 inch wood stick with 4 washers at midspan as shown below. The stick is $1 / 16^{\prime \prime} \times 1 / 2^{\prime \prime} \quad \mathrm{A}=0.03125 \mathrm{in}^{2} \quad \mathrm{Sy}=0.0003255 \mathrm{in}^{3} \quad 4$ washers $=0.15 \mathrm{lb}$
Note the deflection caused by the load. Calculate the flexure stress.
3. Next apply an additional axial tension force to the stick of approximately 10 lb (pu Next apply and note the change in deflection. Calculate the additional axial stress.
4. Make a sketch showing the addition of the stress profiles of flexure + tension.
5. Now apply (or try) an axial compression load of approximately 10 lb to the stick and again note the change in deflection. Again calculate the axial stress.
6. Make a sketch showing the addition of the stress profiles of flexure + compression What additional load and stress is being neglected in the case of compression + flexure?

Lab Session:

$$
\mathrm{Q} 2: \mathrm{fb}=\mathrm{M} / \mathrm{S}, \mathrm{M}=\mathrm{P} \times \mathrm{L} / 4
$$

Q3: $\mathrm{ft}=\mathrm{P} / \mathrm{A}$

$$
\text { Q5: } \mathrm{fc}=\mathrm{P} / \mathrm{A}
$$

$$
M=\frac{P L}{4} \quad f_{b}=\frac{M}{S_{y}} \quad f_{t}=\frac{P}{A} \quad f_{c}=\frac{P}{A} \quad f_{\text {comb }}= \pm \frac{M}{S_{y}} \pm \frac{P}{A}
$$

TENSION + BENDING $=$ COMBINED STRESSES

